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ABSTRACT

Chance Constrained (Cz) Programming and Linear Programming under
Uncertainty (LPUz) are joined together in order to deal with different
risks and uncertainties which are commonly encountered in capital budgeting.
This includes payback period protection via chance constraints formulated
to cover (or bound) a possible loss of future opportunities during the
payback period. It also includes liquidity requirements formulated pre-
emptively via LPU2 to provide protection against possible cash (or liquidity)
shortages at specified times. |

The case of arbitrary discrete distributions is examined and new
formulations are developed which model economic, statistical, and technolo-
gical decision interdependencies. Relations to geometric programming are
indicated prior to reducing these formulations to zero-one integer program-
ming (deterministic) equivalents., Duality relations obtained from these
formulations provide separate evaluators for yield, risk, portfolio and
liquidity effects of cash investment, Finally, relations to '"Balas-type"

subsidy and penalty adjustments are noted.



I, Introduction

This paper is a sequel to earlier ones [5,27 y which detailed some new
approaches to capital budgeting under risk. We may here recall that these
previous papers introduced a joint use of chance constraints (Chancc-Constrained,
or 02, Programming) and Lincar Programming Under Uncertuinty (LPUU) in order to
provide new ways of dealing with risks in the different dimensions that are
likely to be encountered in modeling for realistic capital budgeting. The
objective was to open new avenues for an operational approach to such multi-
dimensional situations of risk which may be encountered in actual applications,
and, simultuneously, to achieve a possibly better understanding of common
practices with regards to payback-liquidity. To facilitate understanding,
only the simplest types of situations were considered -- e.g., only payback
and liquidity were considered to represent some of the different dimensions
of risk and only the class of zero-order rules in 02 Programming were treated
in explicit detail. The present paper is also confined to these aé the
simplest situations which can lend themselves to the kinds of understanding
vhich are wanted at this juncture.

When the probability distributions of cash flows are continuous there are
various prchlems of computation that remain to be reso].v.ed, especially in those
cases for which the distributions of cash flows are not normal (or log-normal),
since in other cases the precise nature of the deterministic equivalents, if
any, have still to be detailed when the kinds of constraints we shall consider
arc assuned to involve arbitrary statistical distributions or classes of
decision rules. In some of these cases one can utilize various devices of
approximation, ete., =-- e.g., non-normal distributions might be approximated
by convex combinations of normal ‘istributions--and, of course, various types of

transformations and reductions can also be employed.g/

1/ See also [67]
2/ Scec.g., [12]
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Howaever, size and computational effort will generally increase rapidly, and
theoretical interpretation of results becomes difficult, as well.

In the light of difficulties like these, it has seemed worthwhile to
investigate other possible approaches und, in particular, it has seemed worth-
vhile to turn to discrete disuributions.é/ Such distributions had not been
explored previously in 02 programs ,‘_4/ although, of course, they are of interest
in their own right as well as for approximating continuous distributions.z/
Chance constraints which employ discrete distributions are especially attractive
for capital budgeting since these are the ones most likely to be available
insofar as any data on frequencies are available at all.

We shall naturally be concerned with arbitrary discrete distributions.
Furthermore, we shall show how one may utilize multivariable distributions of
this form together with combinations of decision variables in ways which can ac-
commodate technological and economic interdependencies (substitutability,
complementarity, etc.) as well as stochastic relations that may be of interest

in capital budgeting .-6-/

See e.g.,/ 6/ and [37]

Our attention has been called to certain work [5}7 by W. Raike in
this area.

See [ 7/

See /6] for a detailed development. See also Hillier [I5/ for
comments and suggestions in a similar vein.

Z

< &
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To obtain the interpretations which are of interest, these probabilistic
formulations will be reduced to certain nonlinear deterministic equivalentSZ/
and then the latter will, in turn, be transformed into a 0-1 integer (1inear)
progranming equivalent. Within the text of this article this integer program-
ming equivalent will be interpreted somewhat loosely as an ordinary linear
program and related to the work of Weingartner Z§i7 and othersl Accompanying
remarks will provide needed qualifications and a tie-in to an appendix that
relates this all to the exact duality characterizations provided by E. Balas
1&;7 for 0-1 programming.

We can now best conclude this introduction by noting that, for the most
part, this paper is a summary which attempts to render previous results in a
more compact and sharper form. Conversely, the reader interested in more

detail may refer to [3:7'and [f5;7 in the bibliography that is appended to this

paper.,

Z/ These can also be interpreted in terms of geometric programming. Cf. /[ 6/
wvhere this is done and vhere the solutions und interprctations are also

treated vis the convex-approximant procedures developed in /B 7.
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Discrete Distributions of Cash Flows

To deal with capital budgeting when the cash flows associated with projects

are described by discrete distributions, we introduce some definitions and make

some simplifications, as follows, Let

(1)

M. O

NEII

li

the fraction of project i adopted in period j

chance variable for the net cash flow k periods after the start
of project i |

the net cash flow at level s (i.e., the scalar value associated
with the s level of cash flow) from project i, k periods after
the start of the project.

the probability of occurrence of d:i

a prescribed payback period

a minimum probability of payback--e.g., as specified by management
the investment required initially for project i, assumed known with
certainty,

represents the expected value operator.

l,00..5 I, where I is the number of projects under consideration
l,...., J, where J is the number of decision periods under

consideration.

Figure 1 is illustrative of a set of such cash flow estimat~s as they might

appear for an hypothetical project. Note that the sample space we are dealing

with is finite--i.e., these spaces have only a finite number of points--and

hence the probabilities may be dealt with directly. No mediation via density

functions and corresponding integral expressions is required.
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Figure 1 - Discrete Probability Distributions of Cash Flows
for an Hypothetical Project

With discrete probabilities, the expected value of cash flow for a single
k dk

si %si° With multiple

project in the kth period after adoption is %‘ P
independent projects the expected value of cash flow in period k from all
projects adopted in decision period j is simply the sum of the expected values

Y Y x ok
for each project adopted, which we may represent as i s si dsi xi;j --
by recourse to the notation exhibited in (1) above. Acceptance of project i in

decision period j occurs only if x,, = 1, which adds to this summation all of

iJ
the payoff terms associated with project i. Conversely rejection of project

i in period j produces Xy j = 0 and the related terms are then excluded from
the summation.

We shall, as before, continue with an expected value objective subject to
payback and related risk-control constraints.g/ In the case of discrete distri-
butions, there is a simplification in that the total probability of a payoff
exceeding a specified level is found by directly swmming the discrete probabil-
ities of occurrence for all those outcomes which exceed the specified level.
For example, considering Figure 1, the probability of the cash flow in period 1
exceeding 500 is simply the sum of the probability of a cash flow of 1000 and
the probability of a cash flow of 2000. The probability of a cash flow in
period 2 exceeding 500 is the sum of the probabilities of flows of 1000, 2000,

and 3000, With discrete distributions ecach cash flow level represents a

8/ As previously explained in /3 7 and [/ we regard such a clance-constrained
programming formulation for payback as representing & bound for det}l'%ng with un-
certninties arising from the possibility of better profit opportunities materializing
eotdh ccvan sbnoem wenhnhi1ifies during some prescribed time horizon,
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probabilistic event, The probability of occurrence of any particular combination
of outcomes from a number of projects and/or over a number of periods can be found
according to the rules that usually govern the computation of combinations of
probabilistic events. In particular, the multiplication rule which relates the
joint, discrete, and conditional probabilities of two events A and B, say, may be
utilized in the form

P(ANB) = P(B) P(A/B) = P(B/A) P(A)
so that no particular assumptions need then be made with respect to events which
have zero probability of occurrence. This multiplication rule applies whether
or not the events are independent.

An application of the model to interdependent events requires only a
determination of the relevant conditional distributions. Also, we shall arrange
our model, relative to the decision variables, in a way that ..llows additional
flexibility in dealing with either statistical interdependence, economic inter-
dgpendence, or bothag/ E.g., if we are considering two projects, the probability
of any particular pair of payoffs ocecurring in period k will be expressed ang/
ptl p:2 X, X, where X, = 1l if a project is adopted, X, = 0 if it is rejected.
Thus this expression will be equal to O unless both project 1 and project 2 are
adopted (xl = 1 and x, = 1). Similarly, the probability of occurrence of
specific cash flows from any group of projects can be expressed by product terms
which can reflect a decision interdependence to any desired degree and which
take on the appropriate probability value if all the projects are adopted and are
zero otherwise.

Now consider a payback-period rcquirement formulated as a chance constraint.

A deterministic equivalent to such a payback constraint can be obtained in

principle by first enumerating all possible combinations of cash flows during

A development may be found in [3;7 which relates the former (economic-
technological. interdependencics such as complementarity, etc.) to the
latter (statistical interdepcudencics ineluding portfolio risks, ete.).

;9/ To simplify notation we are omitting the subsecript J associated with the
decision period for these variables.,
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the required payback period, T. Consider the case of only one project, for
instance, so that we can omit the subscript i in our 4:1' Those cash flows for
wvhich the sum of the values dg for the random variables is equal to or greater
than zero--the outcomes, if any, which satisfy E;O dz'.é O--are the set whicp
meet the puayback constraint. Since we have a probability associated with each
of these d: values the product of these probabilities will be the probability
of a particular outcome.

The process can be represented as a probability free, where each final
branch represents a particular combination of period cash flows and the
probability of achieving that combination.

For notational convenience, we define the quantity

Ds = the sum of a possible series of cash flows (d:) over & specified
period T. For example, each unique path through the tliree stage probability
tree (Figure 2) represents one value of Ds, €.8., for T = 3, This is the value
determined by summing the values of d: from a mutually exclusive set of out-
comes. Having enumerated the set of values for Ds we can determine the
probability of occurrence of each value as the product of the probabilities of
occurrence associated with each branch.

We will designate the probability of a specific outcome Ds as Prs. As we
shall see this identification is ip the nature of an isomorphism which permits
us to replace the constraints on the dg with constraints on the probabilities
only, relative to KA . The set of possible outcomes is a finite set which
we have indexed over s, and we may partition this set into those s for which Ds
equals or exceeds a specified level and those for which it does not. E.g., we
may specify the set

S = <s: Dsg 0}
as the set of cash flows over T periods which is non-negative (i.e., mects the

payback requirement).
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For any set of Ds we determine the probability of achieving some specified
value by summing the Prs associated with the set of Ds which aclileve the speci-
fied value. Therefore:
P FZS PrS = the probability of achieving payback if the project is adopted.

We now turn to ways for é:impliiying the .tmalysis by observing that the final
vranches of the tree, that is, the total set of Ds values, can be divided into
two exhaustive, mutually exclusive sets - namely, those outcomes which meet the
payback constraint (Ds.} 0) and those which do not (Dsl 0). As a direct conse-
quence of this, we can write the payback constraint in two equivalent forms.
E.g., we may write

s GZ S Ty % 1
vhich represents the requirement that the probability of achieving payback must
equal or exceed ({ , where 0£ (X£1 is a prescribed measure of risk or

probability and X, & scalar, represents the decision variable which is applicable

to.this one-project case. Alternatively we may write

Z~ Prsxf(l- X ) < 1.
8€ S
(2)

vhich is the complementary requirement, viz., the probability of not achieving

payback must not exceed 0 £ (1 -&X ) < 1.

We now define this probability for DS< O as:

P =3 gg‘ PI‘s = the probability of not achieving payback if the project

is adopted.
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In any event we have achieved a simplificttion for the case of discrete
distributions in that we now neced to deal only with this one linear constraint
and thereby eliminate the double inequality (nonlinearity) that is a part of
the chance constraint in the case of continuous distributions (Sec [3__7)ll/

We may now forgally proceed to write

Maximize Z = Z Z pk dk X
(3) k=0 S s s
Subject to
(a) Px<€1-_

(b) 04 x%< 1, x an integer
as an ordinary 0-1.integer programming problem for this one-project case. This
model is deterministic but, of course, it is too simple to bear.ihe weight of
further extensions to multiple-projects and other types of risk
constraints. On the other hand, we shall soon see that even these more complex
cases can also be reduced to 0-1 deterministic equivalents and have the

structure of this one-project problem.

ly Although we have, for the sake of simplicity, developed this example by
assuming that the cash flows in any period are statistically independent of
those in other periods, this involves no real loss of generality, at least in
principle, since the method can be extended to statistically interdependent
distributions wherc cash flows are dependent on the cash flow levels occurring
in prior years. Such an extension requires only that ths relevant distribu-
tions be estimated and hence adds no conceptual or representational problems,
although, of course, it does require extensions of the computatiogs by such
prior analyses and reductions as may be necessary to secure the Pgy values for
cach interdependency jetween the dsi'

If cash flows are dependent on cash flows in prior years, then the rele-
vant probability distributions to use for cash flows in periods k = 2, 3, « « «,
cte. are the conditional distributions of cash flows. This means that in each
period there may be as many distributions to estimate as there are discrete
levels of cash flow in the previous period. For instance in the tree_diagram
(Figure 2), the distribution of cash f{low furin(g t&c seiond period id ) Yould
have to be estimated separately for d~ = d7, for 4~ = d,, and for 4~ = d_.
This would not change the number of possible outcomes (fhe size of the tgtal
set of D_ or branches on the tree, nor the computation of Dq' and P. The
probability of a partigular outcome, D, is still found by multiplying the
probabilities of the dg,; of which it iS5 comprised.
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3. Extension to Multiple Projects
Having examined the single project case and some related interpretations
in a very simple context, we now proceed to more complex cases. In particular
we extend the model to multiple projects, while allowing for crosc effects
between projects in a variety of ways. .

At this point it is well to reiterate the general setting in which we are
exploring the problem of capital budgeting under risk. The firm is faced with
a total of I possible investment projects, identified by the subseripts i = 1,
eeey I. It has made estimates of the cash flows associated with each of these
projects, and has described these cash flows in the form of discrete distribu-
tions. It wishes to plan its investment program over a specified horizon of
J years, and will conmit itself now to the projects it will initiate during
each of these j =1, ...., J years (i.e., we are supposing that a zero-order
decision rule applies),;g/

In order to protect against the uncertainty of possibly "even better"
investment opportunities arising, it is assumed that a risk reduction is made
via a payback period constreint or poiicy. In particular it is assumed that
the applicable policy is formulated so that the portfolio of investments under-
taken in any year must have a probability (X of reaching a total non-negative
cash flow within T years. This will hereafter be referred to as a portfolio
payback requirement and the related "opportunity risk" coverage it provides

will be distinguished from constraints formulated to provide protection against

12/ cf. [97.
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still other types of risk. (For instance a constraint designed to maintain a
specified minimuwn level of liquidity at prescribed points in time will alco be
utilized in the form of a "solvency requirement'which is to be met with probability
1 at the _end of each pcriod.)lé/

We now develop the probability expressions needed to extend (3) for the
deterministic equivalents of this more general problem. The probability of
any particular series of cash flows 8ccurring during the T years following the
initiation of a specific project isk,-7_-7(; p:i, the product of the probabilities
of each of the individual cash flows which comprise the series. By swmming
the probabilities of each of those mutually exclusive series which achieves
the specified outcome (i.e., for non-payback those vhich fall in the range
Dsé 0) we obtain the probability of achieving this outcome if any one project
is adopted.

We shall hereafter assign a subscript to P vhen we want to indicate its
association with a specific project. Clearly, we m , than apply the method
presented in section 2 to any number of individual projects, thereby determining
the appropriate probability of non-payback (Pi) for ecach.

If more than one project is adopted, however, the joint probabilities must
be considered in case either a.)projects are statist’ ally interdependent, b) the
payback requirement is to be applied on a portfolio basis, or c) both these
conditions apply. Recalling that b) follows from our interpretation of payback
as a risk constraint designed to hedge (via an inequality) for the possibility
of lost opportunit.ies, it then also follows that we should undertake consideration

of the joint interdependent probabilities,

13/ Still other types of risk may involve a use of posture constraints either
at prescribed points in time or at the end of a planning horizon. Such horizon
posture constraints, we chould note, can be especially useful in establishing
inequality bounds on beyond-the-horizon opportunities (or requirements) by
reference to the full detail that is available from within-the-horizon components
(including the dual evaluators) of a model. Thus, here again, an alternative

(or complement) for the use of a single summary discount rate is availuble to
take account of beyond-the-horizon considerations,
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We proceed to further details as follows, The definition of Ds is extended
to include the outcomes resulting from adoption of more than a single project.

Observe that (di'A), the cash flow at level di {for project A, may occur in com-

bination with a cash flow level of di‘, d;, or d;' from project B. We can, for

each pair of projects, again determine the set of all possible outcomes vhich
achieve a specified level, and express this as:

SAB = { 8: Dsé 0}
vhere the subscript identifies the pair of projects which define the set SAB
that is of interest. We establish the non-payback probability of this set by
taking the product of the probabilities of each possible pair of cash flows in
the initial period times the product of the probabilities of each possible pair
of cash flows in each succeeding period through T. Then we sum these proba=-
bilities over all the final outcomes for which the total cash flow achieves the
specified level (i.e., for non-payback we sum over all outcomes for which total
cash flow is negative). If we then multiply this probability by X, Xp, we have
an expression for the probability of not achieving payback from a program con-
sisting of only projects A and B; Observe, however, that when either X, = O or
X = O, these Joint probability expressions take on a value of zero. It takes
on the appropriate probability value only vhen both projects are adopted (i.e.,
menxA=lg§ng=l).

Recall that we want to consider the entire distributions of relevant
probabilities. Hence it is not sufficient to stop with this two-project case
as we could do if we used only variance-covariance (or semi-variance)ly
measures of risk. To be able to consider any finite number of joint-project
possibilities, we therefore proceed as follows. To obtain a function vhose
value is the probability of achieving a specificd outcome, we further sum a
series consisting of the probabilities associated 1) with each individual

project, 2) with each pair of projects, 3) with each triad, etc.

14/ See, e.g., Ho M, Markowitz /2o/.
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This is all that nceds to be said in principle since the general path of
development is now evident - - viz,, as in the two-project case, associating an
Xy with eauch term, as appropriate, assigns a value of zero to any term including

a rejected project, ete. Per contra, each term which includes only accepted

projects (xi = 1) will have a non-zero value , so that we thereby allow for the
statistical (and other) dependencies that are appropriate via this mode for
model development. Appendix A details the development of the appropriate

probability expressions.

k. Linear Programming Models Under Certainty

At this point we may put these preliminary developments to work in a way
that will help to relate this to some of the work for certainty models as
previously developed by Weingartner in _51.7 in order to advance the state-of-
the~art of capital budgeting theory and practice. This should help to illuminate
a train of developments that relates back even to / 26.1 7/ as well as subsequent
developments in financial-budgetary j;Lanning.

Thus in these developments we rhiall follow Weingartner's initial develop=-
ments and avoid dealing with any intcger requirements in our interpretive
discussions. The latter will then ' . elaborated subséquently in an appendix.

In moving from certainty models of capital budgeting we want to show how
a risk extension modifies such a certainty model and, in particular, how it
modifies the criteria by which an acceptable project may be defined. In this
way we shall see how the presence ol risk imparts some new interpretations of
the capital budgeting problem. For instance one analysis of these portfolio
risks will help us to point up the possible inadequacies of approaches which
propose the application of a "risk =djustment factor" (e.g., the application of
a higher discount rate) to individunl projects. Other interpretations will be

sed to distinguish between yields <nd risks on individual investments and their

related portfolio effects as well, DBut, in any event, it will be well for us to
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use the work of Weingoartner as o framework in order to rclute these materials
to the preceding work that he has succeeded in Incorporating in his models.

We turn to one of Weingartner's "final" models 15/ in vhich funds may be
borrowed but at increasing rates of interest as the amount of borrowing
increases. We shall assume that the firm moy invest tay surplus funds it wishes
at some rate of interest equal to or less than the mirimum borrowing rate. For
simplification, it is assumed that borrowing and lending are accomplished by
means of "renewable" one year contracts. The objective is to maximize the value
of the firm's assets as of the planning horizon, as represented by the value of
physical assets and cash. The funds available to support the investments are
determined by the cash throw-off of the firm's existing resources each year.

In order to present this model, we let

Dj = the funds anticipated to be generated Ly the firm from operations

in year J of the resources the firm curirently controls; or
equivalently anticipated throw-off based on continuation of the firm
but excluding revenues to be derived from investments which the model
is designed to determihe,

the interest rate applicable to the n step of the (marginal)

r =
n
(4) supply curve,
wnj = the amount borrowed in this nth step in year J,
Kh = the upper limit of the nt.h step.
A
di = the value of all flows generated by an investment subsequent to

the horizon;é/ discounted at an appropri..c rate of interest.
v, = the amount available for lending in year J,

= the rate of interest available for investrment funds,

15/ See [/ 31/, pp. 168 ff.

;é/ This follows the development provided by Weingartner rather than the
horizon posture constraint alternative that was footnoted on pagelo,
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Then, utilizing these definitions together with those of (1), this version of

the "Weingartner Capital Budgeting Model" becomes
I N
N
Muximize X' d, x, +v, - Z' W
. i
1=1, B R
Subject to
I l N
© 121 (=38 )y e Dy
T . n=1 N
-
(v) g‘ ( dy “i) (1+ rL) Vi + vd + J;; (1+ rn) LA +
=1 N
(5) +Z W 4D J= 2,000,J
’ n=1 nj - " J,
(c) wnjé Kn, d=l,ooo,J;n=l,oo.’N
(a) Oé_xiflj i=1y.e0,1
(e) vj’ wnjé O j=l,OOO,J;n=l’o..,N

Constraint (5a) requires that the net cash outflow of the project from its
first year of operation plus surplus cash at the end of the year, less the
amount borrowed, must nol exceed the cash throw-off from present operations
during the year.lZ/ Constraints (5b) apply a similar requirement to the subse-
quent years within the horizon period, adding the interest earned from lending
or paid for borrowings

The rates of interest are associated with steps in a marginal cost of funds

scheduwle and cre ordexrc. - that » Z i LT This relation between the

n-1 n n+l*
rates of interest on adjacent steps eliminates the necessity for stating lower
limits, since the alternal ive to borrowing at a rate ro is borrowing at a lower,

hence preferred, wrate r with s<£ n. If borrowing at rate L takes place it is

becausc the limited amo bt available at lovwer rates has heen exhausted.

7/ Mo cimplify notati : e have collapsed the initial investmept d; and the
cash [lov gererated du the firci year into a single value, di'
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The dual problem to (5) is evidently

Minimize }:il D . z]_ ui + z ; K

.'j n
I A
Subject to (a) ;1 -4 di + Uy2a 12 1,00.,]
t 21
(b) AJ
(6) (c) -AJ + Ko > -l n=1,...,N
(d) )\ -(1 + ;) A,j+1§o J=1y000,0 =1

(e)-,\:j +(l+rn) 'lg+1 +K-Oj lyeeesd=l n=1,...,N

For any accepted project (i.e., Xy > 0), (6a) will hold as an equality as

a condition of optimality. Thus, still following Weingartner, we obtain
* J *
A J
My = a o+ 321 As 8
*
From this we see that for accepted projects ‘ui 20 is simply the discounted

sum of cash flows subsequent to the horizon plus those up t-:*o the horizon asso-
ciated with a particular project, i. The discount rates, kj , are compound
interest rates for (J-j) periods at the appropriate period rates. As Weingartner
shows],'g/ the appropriate period rates are the marginal rates incurred (or earned)
during each period. The criterion for project acceptance (vhen projects are

technologically independent) is that the discounted value of the project as of

the horizon is equal to or greater than zero, i.e.

*

* Z Yyalso
3=1 12

18/ 1bid., pp. 171-172.



%. The Extension to Uncertainty

With these developments and interpretations in mind, we next extend the
Weingartner model. First we regard the cash flows as stochastic in naturc
so that the amounts of borrowing and lending must also be regarded as
stochastic rather than deterministic variables when the plans are being
formulated over the indicated finite horizon. We also add a payback constraint
on the projects selected, in order to constrain the possibility of missed
opportunities to a desired (inequality) risk level. We still wish to maximi e
the value of assets as of the horizon year, but since this, too, is a randc
variable, we can sclect from a variety of possible objectivesl-g/ and try tc
maximize its expected value. This model is then similar to the general mo: !

we presented in / L47.

The payback constraint we shall consider can then be formulated ang"

R
(1) Pr (k:z;) 1};1 dli{xié'o)s_l-C(n

Utilizing the developments in Appendix A we may write the determinic

equivalent to (7) as

I-1 I
P, x, + Q.p X. Xp +
dn T T 121 ,(’:L;’H i " oA
I-2 S];‘-l I
(8) ; ) Q X, Xp X+
=1 f=T¢q1  meit2 n *1 %L Fn
I-3 I.2 Iil I Q
) . X, X, X, X
’ m “n
i=l ,(:i+l m=i+2 n=it+3 1,€mn * ’6
£ =
¥ P Q3,1 ¥ % X3 orrexp S -0

vhere P and Q identify non-payback probability expressions as defined iun

Appendix A.

19/ See e.g./9_/

2_Q/ Other payback constraints (c.g. in bank type mortgage ammortization scitcdules)
could also be utilized to handle partial (interim) payments. See .[’l

e
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To reduce the above constraint to an integer linear equivalent we procced as

20a/ The set of all possible combinutions of projects is a finite set

follows.
vhich we index over h, M /'h_/ identifies one of these (2I) combinations con-
taining exactly rnh projects., We then replace each product 1w xL of two or

more decision variables by a single variable Y defined by

v = T x
h i€ M [h_7 i
where we also require the simultaneous satisfaction of
(9) ) X, £ (m-1)+y
i€mM /7
and
(10) ) X; > my

1 €M /7

with all variables required to be O, 1 integers.

To see that these new constraints in the variables % produce an enlarged
problem vhich is equivalent to the original problem, we first observe that for
each product expression in the original problem we have introduced such a Y, 8as
a new variable., But now consider the 'constraints which relate these N values
to the original Xy variables. If all the X; in a specific product expression
in the original problem have a value of 1 at the solution, then the corres-

ponding ¥, must have a value of at least 1,-since under these conditions

X, =
12_:14 [n7*? "h
which, with (9), gives
mem =1ty

or 1< Y

On the other hand, we cannot have Yy > 1 since, with all xi,j = 1, the con-
straints (10) give

M 2 MYy
or 1> ¥,

20a/ I.e., we proceed as in /6 J and [3 ]
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Thus X, = 1, all i, implies W = l, and conversely, vhen the X, are restricted ﬂ

to be at valucs of O or 1 only. Similarly, if any of the x, in a specific term

i
have a value of O at the solution, then the corresponding ' must be O, since
in this case

1§M [11_7xi “"h

vhich with (10) requires that
AN
1l Y

But then since is restricted to non-negative integer values, it follows

h
that this last condition implies W = 0.

Applying this transformation to constraint (8 ), we replace each product
expression containing more than a single decision variable by a new variable ¥,
and adjoin two additional constraints for each such unique product; expression.

Thus we obtain for (8 )

UL nurfan 6@
w) (b)igu_hjxi-yhé m, - 1
_X Z 0
(c)i€M[thi+mh ¥, <
(a) Xy » ¥, 8ve integers

For verbal compactness, the transformed version of the original constrai il
(11a) will be identified as the original constraint and the two sets of
additional constraints (1le,11d) will be referred to as adjoined constraint:
The unity upper bounds are always understood as being involved in the origin:.

constraint set, and these are never altered unless otherwise noted. 21/

21/ ¥or clarity we index the constraint coefficien}s associated with product
Q ) gver h = 1,...,0l. H has a maximum yalue of 2 = I - 1, consisting of
C, {= IfI-li' second order terms, C3 (=I(I-l)(I-2)\ third order tcrms,
2 6 /
to u single I order term Ci. This maximwn value is attained only when all
possible combinations of the™I decision variables appear as products in tlie consoraint,




=21~

A modification of the Weingartner Capital Budgeting Model can make a
closer contact with our own earlier model.[ﬂ;7 by utilizing the definitional
nature of the lending and borrowing constraints (5a and 5b) to transfer both
conditions into the functional. For the deterministic case this will reduce the
.. set of constraints and hence has some virtue, perhaps, even in the deterministic
case. For the case of liquidity risk it also allows us to utilize an LPUU
formulation that captures the essentials of this kind of risk dimension without
having to forego our . previous 02 Programming formulation of opportunity risks
as & way of bounding future uncertainties in these dimensions via a risk
inequality.

Under the rules of LPUU, as formulated by Dantzig /12/, it is assumed that
a multi-stage process is available under which one may first observe the out-
comes of the various di and Dj in each period, and then, afterward, one can

choose values of v, or w,_ which satisfy (5a) or (5b) as an equality. Thus, ve

J h
now consider constraint (5a) with the di and Dl as stochastic variables. Then

we rewrite this constraint as,

N I
1
- L
ne Loy £ L &x D
n= i=1

Since either vl or""nwn1 (or both) will be zero, at an optimum, we may utilize

the developments in.[iq;7 to express vy and E: Whq @8

I
1l
v. =max ‘0, ( d, X, +D )1

1
L (
2: ' 1 t
1 - - -
anl T w, =max {0, ( 1§= dy X, Dl )j .
If we then associate the relevant interest charges with these expression= = may

transfer them to the functional where the expected value operator' will red
them to deterministic expressions. We may then treat constraints (50) i
analogous manncr and thus arrive at a new problem, which is a deterministic

equivalent of (s).
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We will first develop a deterministic equivalent for the situation in
vhich borrowing at a fixed rate is possible, but in which lending is not
possible. The amount of borrowing in any period will be given by
I
(12) wy = max {O, (- 2-1 dg Xy - D;j+ (1+r) L v.j-l)
vhere the d'z and D;j arec stochastic variables, w,j-l and v;j-l’ of course, can be

expressed in terms of the dg-l, D w;j-2’ and v;j-2’ and the expression for “').

J-1’
may be developed recursively, since we may assume L (the initial outstanding

borrowing) and v, (the initial stock of surplus cash) to be known. Since, a
we observed earlier, borrowing will not taz~ place unless the cash flows rcquire

it, wj = O when the quantity

I 5
(- Y ax, - D + (1#r)

i 3 Vi " V3a)

is negative. We may thus again utilize the developments in [J__OJ to expres:

borrowing in a given period as

_ 1 J -
(13)  w, =3 ( -i; dy x, - D.J. + (1+r) Wiy Vi1 ) +

I . '
+ 3 @ x. - D, + (1+r) w, - v
el ;l J ( ) J-l J-l

where the vertical lines indicate an absolute value.

Expressing w,j-l and vj-l in terms of the recursive relationship defined
by (13), we obtain
w, = 3=, & x, - D, + (L+r) } ( -3 adlx, - o i),
J 1 ¢ 1 i J 2 T i i j-. j=2
' ]
' o gl - . ) |
- Vj-2) i }i:dl x; = D _1+(l4r) Wi o T Vip IJ
V[ e il 3 3-1
-5 ( d x, = D7 -(l+r)w +v, o)+ Zd, X, +D
L Zlo 1 - J -2 "2 i 1 1 )
R j . 1 _e L aeb
-(14r) W2 t Vi . +3; }; a; x; Dj +(14r ) 2 | ( '“’-j N
i _
J
-oefficients

21a/ This involves a generalization of the theorems in [10] in that (a) the
" are random variables and (b) an extension of "2-stage" LPU2 is involved here.
(We previously also utilized this same generalization in [4] but failed to note

te ~eenliaitlu ot that t:ime.)
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-1
J 1t (1+r)w'j o " VJ-2) + -zi: d’i xi'D,j-1+(l+r)wJ-2'V.j-2
1 J-1 _
-3 [ di x, + D,j-l (l+r)wd_2 + V.‘J-2) +
+ Z dj-lx + D - (1+r)w + v
T | -1 j-2 Jj-2
" We may simplify this expression by combining terms as follows
w, =5{r/2|}, ™t x, +p - (l4r) w + v +
jo @ T T S DS | j-2 © '3-2

( 2+r ) (-);; d".l'l Xy - Dj_l +(1+r) wj_2-vj_2) - g dg X, =%

2 >
1 (r2|Y & rx, +D, . () w, ,+v +

2 |/ Zl i i 3-1 j-2 7 V3-2

(_2_?_) (—§ adt x, - Dyt ()W, - vy ) - ; & x, - 3‘],%

To achieve further simplification, we observe that the interest term contritut

at most a small fraction of w.. Consequently, we may approximate w:j bya-?*/
J

: .!‘_ 3 J - - J-l bd o

Wy ¥ ( Zi a5 x, - D, Zi 4™ x - Dy o+ vy vj_z)
1 J . - J-1 - _

+3 -§ d; x; Dj Zi di X, D;j-l + w:j._2 vj_z 'l
Expressing wJ and v‘j > in terms of the recursive relationship (13) intr-uce
the di'a and D j-2 into the expression for wJ. Following this procedure
recursively to the initial period, we obtain

Tr(.N J - _

L) v 3 ( 2{ )} a; x, D;j+wo v, )+

1 J 4 - s
T ;; dy x, .D,j+wo v,

In other words, if the sum of the total net cash flows from new projec!
and the existing operations is a negative quantity (i.e., a net outflow) '
the firm must borrow an equivalent amount of cash. If the sum of the fluw

positive (i.e., a net inflow) then borrowing will not take place.

2?/ This approximation eliminates the "generalized hypermedian" terms.

DEC, Cufley
A .Charnes, W, W, Cooper, G, L. Thompson [L_O-] for a discussion of such

hypermedians.
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Reflection on (14) will reveal that borrowings expressed in this form are
nothing other than a liquidity constraint, wherc the minimum liquidity level is

identical to initial cash holdings (i.e., L, = M , for all j). Consequently, we

J
may transfer the expression for borrowings to the functional in a fashion
analogous to the one we formulated for [ L|._7. We may express the interest cost

for a given year as

- J
r (- gj),: dixi-fDJ-f-wo-vo)-i-

2

i
Jz ; dgxi-z D._j-l-wo-vo

I
2
vhere r is the average rate paid for that year. The total available cash at the

end of the horizon will be approximately

J T J i1

@) T v oame § oo T CD T AT,
Lot 171 j
J=1 i=1 j=1 2 3=l | t=1 i=1

g i as \ D + i
- ) X, = W =V
tgl =1 1 s SO

if borrowing takes place only at the lowest rate. That is, cash assets will

+

be the net cash flow resulting from existing assets and new investments less
interest charges paid out on borrowings. When borrowings must be obtained at
successively higher rates, we must have an interest term for each rate. For
example, if borrowings in excess of an amount K, must be made at rater, > r

L 2 1

then the interest term in (15) becomes

- _ = s - o Lt -

(15.1) ry 5 [ (- 5 ) dz xi - Z Dt + wo - U ) + - L ?‘ di Xy
2 3 IL t i t t i
).t, Dt+wo-vo]
r - r SRS
2 i > } d.x, - D, =K, +w =v +

- : j & 21 i"i 5; t 1l o] o)
+ 5 Yy d,x, - D, =K, +w_-v 1

: A s M | 5,: t il o o
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The second part of this expression (15.1) equals O for all values of borrowing
up to Kl and represents the actual borrowings times the interest premium for
all borrowings which exceed K.. A similar expression will be required for

1
each additional level of interest rates wvhich apply.

We may now express the deterministic equivalent of a risk version of

( 5) (in vhich we define r_ = 0), viz.

I
> & L A J )
Maximize E {( Z‘ d; x, + IJ: Z dy x; + Y, Dj)
N J ( j I 3
'Z fn " p-1 ;.(- Z dt."x.- Z D, ~K +w_=v_)+
n=l ~— 35 j= i o1 iol i 1 ol t n o] (o}
TE. ~w
+ - Z d, x, - D, ~K +w =v_ '
e 5 ii o1 t n o oi f
Subject to (a) ). P, Xy ¥ }: Q ¥, < (1- X )
i h
(b) 04 x, 41, 1214000y 1
(16) () ¥ X; = % & m -l
i€ M/h 7 h=1,..., H
()-—). x; +my< 0,

i €M /h7/
() y,20
We observe at this point that this is similar to a portion of the development in
[hj,",‘?’/ (with the omission of a horizon posture constraint), where we have 1)
added the horizon values of physical assets (the Gl) to our objective function,
2) represented the cash flows generated by operation of existirg assets by a
distinct variable (DJ.), and 3) collapsed the initial investment (di) into the

total first year cash [low (di)

?3/ Seemodel (8.3) in [l|._7
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The payback constraint appears as (16a) in a form that is consistent with
discrete distributions of cash flows rather than in the continuous form. Thus,
we see that our basic model formulated for continuous variables in [’4_7,
although it was developed from a consideration of the basic elements of the

investment problem, is in fact a logical extension of Weingartner's model to

include multi-dimensional elements of risk,
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We now turn to the development of the dual to (16). In order to accomplish
fhis we must take the expectations of the absolupe values of certain random
variables of discrete distributions. Although the notation is complicated, we
do obtain a linear programming équivalent to (16). We turn now in the follow-

ing sub-sections to develop this equivalent..

5.1 The Assignment of Discrete Probabilities and Their Joint Distributions

The discrete random variable dg is to be defined by the following notation.

j - j 3 ] . * qj 5 - (-j j
(17) dy = diki with probability Piki 2 0 forall Kki€Ky )
The symbol kg ranges over the finite index set A:? and in this notation
i

Ei, ijj = 1 for any i and j.
i
ki€ K3

Similarly the random variables Dj are given by:

(18) Dj = with probability Pjs >0 for cll se§33} :

D,

Here sJ is an appropriate index set for D, and we require E: 3 P, =1
J 5ES Js

for each j.

For each j define the following cartesian products of index sets:

i
1Lt
1£4i<1

and
20) §1 = 1, S, .
IKe<

We shall denote elements in ’ﬁ% by E% and elements in §° by ?j. Thus,

associated with any index point (EI’ Ej) is the outcome
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. . 1
( d 1,0.-, dJ ],d 1,00., dg J’oto’ d l,oo., j,D geoey D )
L] Tk i 2k Ik; 1~ 35,

with probability

t
(21) I Pik;.“L 7T Ptst
ct< 1£t<4]
3

acsuming, without loss of generality, statistical independence,

5.2 Evaluation of the E\m“cted Value of the Absolute Value 1n Terms of
Discrete Random vVariables

The varinble part (with respect to decision variables X4 1<i< I)

of the objective function in (16) is the following:

I J J J
) t
@ Yl S Bt n DY B ]
i=1 J—l > J=l =1
)
N J |3 I J
-y 1
“ENS moma ST o nene)
[n=l 2 j=1 | t=1 i=1 t=1
X /

A
where we assume that the di's are constants.

For each n we immediately obtain the following expectations in terms of the

discrete random variables:

J |3 I 3 '
N \" Oy ™
ooy L= T ey S m kv

J=l| t=1 i=1 s "
A I3, 3, 1
= -\ t ) t 7’ P l
L Z L. 0. ey LDy - Ko vy = vl TR r ts,
3=l (Mg, 5| i=l t=2 1 gz 3 J

v
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The right hand side of (23) is a sum of absolute values of lincar terms

with all probability "removed". Thus, this expression is of the form,

) 2|6

a a

for each n, summed over a large index set. Where é Generally represents terms such as

those apparent within the absolute values of (23). Now the objective function equiva-
n

/\

o

lent of (22) incorporates (with appropriate additional factors) - 2_‘
' a a

'd

in its maximizing form. Therefore we introduce a variable Zn

unconstrained in sign, for each n, and require the form:
n
(25) -z 4 Z 1

a
We are now in a position to give a linear inequality system of supporting

<o,

hyperplanes for inequality (25) which takes the form:
n
Ve

(26) -2+ ) % { <o.
a

a

for all possible assignments of + and - signs to terms in the summand. Thus,
if there are Q terms in summand (24), then there are 2Q such assignments of
+ and -'s and hence 2Q linear inequalities in the system (26).

Returning now to the particular sum (of the genera‘l form (24))of interest,

namely (23), we see that there are precisely

J
(27) Q= L | ki||$
I
i=1
summands where ,»'{i = the number of elements in K% and similarly for

gj. We shall denote these orderings of + and -'s by @ and index these functions
by the variable u, 1 < u< Q. Thus, following the general developments of (25)

and (26) applied to (23) we obtain the linear inequality system for each n

J r 1 3
Tl 5o bah -y T e Y t T
(28) /e /._. gu (ky,s )l- T L, dik;xi ) Dtst Kn.+ Yo voJTrPik:"Ptst ZnS L
= ’ﬁ'j - i=1 t=1
-}

for 1< u<AQ.
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Dok Further Simplifications: Signwn Random Variables

It would appear that (28) actually involves expectations of random variables

closely related to the di's and the D,['s via the assignment of + and - signs.

J
This is precisely the case and we refer to these altered random variables as
"signum" random variables, More precisely, recall that the signum functions
Ou, 14u4Q define a functional assignment of + and -'s to all terms in the
summand (23). When restricted in the natural way to each subset of summands
determined by the index set, say, (K/%, EJ) for any given j, each Qu determines
an expectation for a new random variable that is derived from the old one by
assigning the so-determined + and - signs to sample points according to the
overall Ou.
Thus, let J
(29) ;1 a; ) J
denote the new (signum) random term derived from t=zl d: by assigning + and -
signs to its sample points according to the overall assignment function QE.
Similarly we define the signum réndom variable

J

vD
(30) {-;1 t |,

In terms of the signum random variables (28) becomes:

28 \i : AT -
(31) - 2_1 o E >_—: d?. X5 - Zn < E D | + (Su K - wo + v,
i=l | j=1 [t=l ° ju S leE Ju o n
for 17 u”Q and 1<n<N,
and vhere . Z s a
Gz J gd b7
o L ks TR i

J i t
K
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2.3 Primnl and Dual Lincar Programming Problems

At this stage of development we present the linear programming equivalent

of (16) and its dual. We find it convenient to introduce

PRIMAL
I J J J N
2 1 Z J Z t
Max a4 Ea try /., Ea xi+n=f *n " Tl g
=1 J= 2 =1 %=l 2 L
subject
to I (g 3
- : '{ g rd,
(2) 'Z 4., E Z‘ d;‘ s +Zné E D +>5 K -wo-i-vo 1l4ducQ
1=1 |§=1 | t=1 % jo1 Lest by
i u 1= n-=N
(32) (b) ZPi X, + ZQth <€ 1-X
i=1 ' h
(c) 0¢x,<4 1 s 1<icI
(a) E: *i < 1 1¢h<H
: -y < - ; £h<
i fn{n] h g ’
(C‘.) - Z -xi ~,mhyh _‘_ 0 3 lﬁh‘H
i€m[n]
and Y 20
DUAL
J J
) W=D (ki) +o(l-O0) + » n*
Mi i )iz D | *t¥ -v v w(l- _
in u__ﬁ, 7u,n Loz L ¢l 5y '\“ é_. ,Ui (m} 1) h
’ j=l ] t=l ju
subject
to ) W
P
@ L AVES Y J 5
a) £.T, |/ a’ Lo e A Z ;i Z
O It e I e+ [ +Z M -M) da+LFad + & L. Eat
? R 1) * Y h e J=1 t=1 1




2 o + = : P
(33) (v) 0, My + m N >0 s 1lén4l
-
() Zu Tu,n =1 =T . ; Ll{néN
2
@ 7w, L0t N
u,n’ 2 /74 'h 'y -
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5.4 Risk Interprctations and Equivalences of the Model

Observe that the dual variables Tﬁ , are associated with the supporting
b

hyperplane constraints and that these are derived as equivalences for the need

to maintain liquidity. While Q is very large we would expect many of the

inequalities (a) in (32) to be redundant for any particular optimal solution

% Y * A " \ ' - - r - Tr
X; s l<i<I and Zn’ l<n.N, Observe also that {I" ru,n = 'n 5 n-1l
implying that the non-zero Tﬁ n 's, for each n, partition the average difference
b
in borrowing at levels Kn 1 and Kn' The non-zero Tﬁ n delimit periods when
= ’

borrowing may take place at lower or at higher levels. This is so because an
assignment of + and -'s via Ou permit or forbid borrowing via the term in
brackets in (28) and its effect on the expectation of the absolute value in
(23) and finally its equivalent impact on total debt outstanding in any period.

*
At the time of actual implementation of an optimal solution X s

14i41,

borrowing may only be permitted in certain periods as determined by the binding

supporting hyperplane constraints, in particular the terms {Z: E z;’dz

for each i and periods j. J=1 t;i =
Observe also that the dual variable {/ is associated with the original

+ =
payback constraint, and the dual variables 7?h ’ 7zh are associated with the

"adjoined" constraints. The quantity:

L 3 N )

T E:E E:d N/ BN (7, -n)

J h h h
u :

represents a risk premium which must be met by the project in order for it to

be adopted. Note that this quantity may be positive, negative, or zero, That

is, the term "risk premium" is to be regarded as generic and may in fact

represent a risk subsidy to a projecct.
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We nced to examine this in more detail in order to indicate the nature of the
different kinds of risk involved and so we procced to a term-by-term interpre-

tation as follows:

J J
z" * /- Z E >~ at
(i) ‘e o Tan) ¢ i . term reflects the entire
u,n J=l1 Lt=1 u

selection of projects and admissible lines of credit in what periods and up to
vhat amounts. This quantity may be positive, negative, or zero. This term is
a function of the probability of borrowing. It arises directly from the need

to maintain liquidity.

(a) If this term is positive, then borrowing is not required (as a tendency)
and therefore a smaller risk premium is required.
(b) If the sum is negative, then there is a tendency for borrowing in restricted
periods and therefore the premium is larger.
(ii) e CJ#fi term represents the risk premium required of a project if every
project is individually required to have at least a probability [{ of payback.
It is independent of other projects.
(iii) The remaining terms consist of a positive and a negative term in the dual
vari.a.blesn;* and 7(’-* . The values of 7{* and 72-* derive from the dual
h h h

constraints (33b), which must hold as equalities when the associated y: is
non-zero in optimum solution. These 72;* and 7{; variables arise, respectively,
from the primal constraints (32d) and (32e) ﬁ?idh are lower and upper limits,

+

resPectively, on the ¥, variables, The 7? and 7( represent then an increase

(1f§_ 7’ 5-‘ () or a decrease (1f} 72 é Q ) in the risk premium required
h
h h

of an individual project, and this increase or decrease arises through the cficct

of the variables Yy, > which represent the interactions between projects.
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Dual constraint (33b) must hold as an equality vhen any y, is positive
(yh >0 implies that some of the associated xiﬁo). This relationship
allows us to examine more dircctly the effect of the Qh coefficients, We
want to show how these Q‘h terms can be interpreted to indicate the character-
istics of the projects with which they are associated.

These Qh values, we note, are simply swmmations of joint and individual
probability terms. Concider, e.g., a binomial coefficient (e.g., m = 2).

ol /

The coefficient, Qh is determined as —
% = (Ppp =Py - Fp)
If the non-payback probability of the two projects adopted jointly is less
than the sum of the individual non-payback probabilities, Qh will be negative.
If the non-payback probability of the two projects adopted jointly is greater
than the sum of the individual non-payback probabilities, Qh will be positive.
I for a particular non-zero y:, the associated Qh >0, then the risk
premium required for acceptance of all projects in the set represented by the
¥, s increased by the amount ( 7‘;* - TZ':), a positive quantity.g/ In other
words, the premium required, in terms of expected present value, for acceptance
of a project increases if the non-payback probability as part of a group is
large compared to its non-payback probability as an individual project.
As the value of Q decreases, the quantity ( 7(;*-mh 7\;? and therefore

X -
the quantity ( TI; - T]hf, must likewise decrease, so that

21&/ The determination of nth order coefficients is detailed in Appcndu A
25/ For y >0, (33b) must hold as an equality, vhich requires that '« (‘11 =

-/.;1'*_ th-: Since (/ \ O, and m is a pOS1t1ve integer, this means that
1 :

" _x  or equivalently ( A

L r Qh - nh )0
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the risk premiwn required for acceptance of ﬁxe projects in a particular
set, h, is a decreasing function of Q’h' When Qh is a sufficiently large
negative value, the quantity (TT;* - 'ﬂ;*) will become negative. In other
words, the risk premium required for acceptance of a project decreases if the
non-payback probability as part of a group is small compared to its non-payback
probability as an individual project. These dual variables 'ﬂ:* and T];*
are measures of the portfolio effects associated with the acceptance of any
particular set of projects.

To simplify matters we may assume that dispersion or some related measure
such as variance, coefficient of variation, ete., is used to represent risk.
The existence of these portfolio effects follows directly from the fact that
the dispersion measure of the distribution of the sum of a number of
stochastically independent variables is generally not equal to the sum of
the dispersion measures of the variables. Consequently, if the accepted
portfolio consists of more than a single project, the probability that the
sum of certain of these stochastic cash flows will not achieve a specificd
level cannot be measured as a linear sum of individual project attributes,
but must take into consideration the entire set of accepted projects. Thi-
effect is precisely measured by the values of the dual variables, n:*
and Tl': . These Tl:;* and 'ﬂ;*, then, represent the effects of the accepl:.
of each project on the hurdle which other projects must pass in order tc be
accepted.

Evidently, the portfolio effects involve interactions between differ:
projects and their risk-return relations. Nevertheless, we have by our
transformation separated out the specific effect of the selection of one
project on the selection of all others. We may also note that the existence
of these dual variables is in no way related to the degree of interdependciicy
of cpecific projects. 'Thus we may impute these portfolio effects for a
specific project selection cven though it consists of a mixture of statist cully

independent and interdependent projects,
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In general, when selecting a portfolio from a large group of projects,
any individual project i will be related to a maximum of (2N - 1) non-zero
values of y}’;‘ (wvhere N is the total nwmber of non-zero x:) through the primal
constraints (32d4) and (32 ). These y: will in general have both positive and
negative Q’h values associated with them. Fér each non-zero y;;_, dual constraint
(33b) must hold as an equality, requiring that, when WY s non-zero,

nror 72;1* , or both, be non-zero.

Thus, when the risk (payback) constraint (32b) is binding, (which is

¥ %
implied by L,* > 0 ), each y* > 0 will give rise to a 7{ 50 ,al >0 or
+% ~% h h 31

both. These T[h and Tzh then are additive terms which modify the risk
premium required for project acceptance on the basis of the project's
contribution to (or detraction from) the desirability of the portfolio in terms
of risk.

Since we do not know a priori which constraint terms will be non-zero at
the optimum, we have no way of determining the net portfolio effect on a
particular project prior to finding the optimum solution.I However, there are
characteristics of projects which will tend to be displayed in these portfolio

effect variables, and these have been explored in [-27.

Relationship (33a) also implies that money is interest free in any year that
outstanding debt is not expected. Thus, if borrowing is never required, j.e,, all'l:l = 'S 0,

then any Project with net cash flows (plus horizon asset value) which equal the required
‘ risk premium would be desirable. We observe that the dual constraint associated
with cach x, i (33a) where the indi-idual terms in the last summation are zero
for any j in which no outstanding debt is expected.
In order for a pro;]ect to be accepted (33a) must hold auJan cquallty,Jl -
S %)
(35) Z 7:‘n Ld kP [+ f (n: } 2“ & t-.lE(f‘i’.
u,n °’

h
(|~l =18 (e
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This expression states clearly the criteria for project acceptance. The
expected sum of cash flows during the planning period plus the value of the
asset at the end of the period must be sufficient to cover the payback risk
premium plus (the marginal interest rate times the expected accumulative
project deficit) and less (the marginal interest rate times the expected
project surplus) for any year in vwhich the firm is in debt.

Thus, a project which had an expected accumulative cash surplus in a
year vhen expected borrowing was high could be desirable even though its
expected total net cash flow was a very small positive quantity or even
negative. A project with net negative cash flow would never be adopted, of
course, unless the inflows preceded the outflows, since otherwise the firm
would be ahead by simply holding cash., Such a project is, in essence, a loan
wherein the firm obtains funds when needed and repays a larger amount later.

If the firm can lend money, say at the rate r., we need only add another

L
expression to the objective of (16), expressing the expected interest earned
for each period., By the same arguments presentecd earlier, the expected loans

outstanding during a period will be

VJ-=E[“'1£ (ZZ daixi+}; D3+wo"vo)+
1 J

J
IR e =
+ 51 L Z‘ di X, + 24 Dj + W voi
J i J .

The interest on this is then given by

Bl DT ey e 03| Y ) adm e
J i J J i J
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This earned interest term will be non-zero only in periods during which the
expected value of loans outstanding is positive. These periods, of course,
are those in vwhich the expected value of outstanding debt is zero, since the
firm will not lend and borrow funds during the same period.

Thus, the functional under these conditions would contain either a non-
zero loan or a non-zero debt term for each period, and the duvual constraint
(33a) would then have a non-zero interest term for each period.

The dual conditions for project acceptance will not require that the
left hand side of (35) be larger to the extent that a project shows a negative
cumulative cash flow during years when the firm as a whole shows a cumulative
cash surplus. Thus, when there is no profitable use for surplus funds, the
individvual projects are not penalized for not generating them when the firm
as a vhole generates them.

Similarly, these same conditions permit acceptance of an individual
project with a lower value (asdetermined by a\i + %‘: E (dg) ) if it shows a
positive cumulative cash flow during years when the firm as a whole shows a
cunulative cash surplus, thus allbwing for the opportunity of lending these
surplus funds at interest.

Extension of this model to allow for project adoption in any period
during the total planning period leaves our essential conclusions unchanged.
The criterion for project acceptance remains the same, except that a project
rejected for adoption in the initial period may now be adopted in a later
period. This means that there will be a dual constraint of the form (33a)
for each period for each project, and a project which does not mecet this
criterion of (35) during the first period may meet it during a later period
due to a reduction in the interest term

Ik
L Y B (af
N k=l t= (a;)
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If we consider project acceptance in any period, the cumulative cash flow of
a project in the periods prior to its initiation is zero, so that the applicable
interest penalties (or subsidies) are those starting with the period of project
initiation., If the availability of very desirable projects causes a large out-
standing debt during early periods, this may lead to the rejection of some
projects in early periods and their acceptance in later periods when the interest

term of (35) is smaller in magnitude.

6. The Integer Requirements

To the extent that an ordinary linear programming solution to our risk

*
model contains fractional values for some of the xij’

meaningful insofar as the related projects must be accepted or rejected on toto.

the solution is not wholly

In general it should be expected that some fractional values will be present.
In order to determine a usable solutioh, a number of possible courses of action
exist.

One option is to adopt fully all projects which are fractionally accepted.
This will generally require a violation of some of the original constraints
imposed on the selection. However, the constraints the firm faces in the capital
budgeting situation are typically of a policy nature, rather than being
associated with rigidly limited resource supplies.ggy Consequently, it is
frequently possible to relax them, and adopt a program which is non-feasible
with the original constraint limitations. The relevant management question is
then .o determine the possible gains to be achieved by a relaxation, and for
this information we may look to the dual variables associated with the real

constraints of our problem.

26/ See for instance [ 16 7, [ 297, end [ 33_7. 1t 1s assumed that these

"round'off" approaches do not cause really huge alterations in the budgets.
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We know from the duality theory of linear programming that the dual

variables associated with these real constraints are the shadow prices of
the constraints. A firm may therefore determine the potential profitability
of each possible constraint relaxation and decide accordingly whether such a
relaxation is in order.

If such a relaxation does not provide an acceptable integer solution, we
may turn to integer programming methods 21/ to achieve a final solution. This
means that, in general, some of the fractionally accepted projects will be
fully accepted, while others will be rejected.

This latter conclusion means that the relationship defined by (35) is
not sufficient to discriminate between accepted and rejected projects. This
implies that a system of subsidies and/or penalties must be imposed on the
projects in order to have an unambiguous division between the accepted and
the rejected projects. In Appendix B we attempt to determine more specifically
the nature of these subsidies and penalties by reference to recent theoretical
work by Egon Balas‘[-L;7 in the duality relations of integer progfams.

But we now note that one conclusion which can be drawn from Balas'.[-;;7
work is that for the normal capital budgeting problem only penalties will exist.
We note that since the feasible space for tlie linear prbgramming problem in-
cludes at least all points in the feasible space of the original problem, the
value of the functional in the integer solution will be no greater than its
value in the fractional solution,

The dual conditions for prodéct acceptance, as given by (35), indicate

that any project which meets these conditions is acceptable for inclusion in

27/ For example Gormory's Cutting Plane approach, Balas' algorithm, etc.
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a chosen portfolio., If (35) holds as a strict inequality, the project is in
fact so desirable that it would be profitable to adopt more of the same type
of project, if this were possible. If (35) holds as an equality, it means
that a proJectA with this level of expected flows is marginally acceptable,
and the xi;j value f'or this project may be fractional in the optimal solution
due to funds for its adoption being limited by a budget constraint or pay-
back constraint. The conditions for acceptance defined by (35) are unaffected
by the integrality requirement. If a project does not satisfy this criterion
it cannot be profitably included in any portfolio. However, some projects
vhich meet this criterion will have to be rejected. In terms of Balas' [1_7
integer duality theory, a penalty must be applied to these projects. This
penalty would then appear as a positive term on the right hand side of (33a)
and, consequently on the left hand side of (35), so that these projects would

tlien no longer satisfy the acceptability criterion.
7. Implications,

The model of capital budgeting under risk presented here leads us to
conclude that many traditional methods for dealing with risk, such as in-
creasing the discount rate on individual projects, can lead to less. than
optimum investment selections. A fortiori this is likely to be the case when
portfolios are involved since, then, the premiums on all other projects
must be considered before establishing the net adjustment amounts on each
project under consideration,

Our linear programming model brings out quite clearly the risk premiums
required of individual projects when constraints are imposed to limit the risks
to be admitted. It also indicates that these premiums should frequently be

adjusted, either higher or lower, based on the contribution of the individual
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projects as parts of a portfolio, The fact that the dusl linear programming

problem gives us a direct additive formulation of the conditions required for
acceptance of an individual project does not justify effecting such risk
adjustments on & one-at-a-time basis relative to some assumed (or bogey) rate
of interest, even when the conditions for integrality are waived. As we have
seen, the portfolio effect can constitute a substantial partof’fhe "hurdle" a
project must pass for acceptance and this, in turn, depends on the optimum
portfolio composition (or mix) allowed by the constraints. In fact, this ad justment
may be negative and this negative adjustment value may even be large enough co
make a project desirable even though it has a negative total expected cash flow,

This model has other useful features, particularly in the area of deter-
mining possible trade-offs. The value of (*/*, for instance, provides a measure
of the extent to which the value of the functional might be improved in return
for a relaxation in the payback constraint. Similar dual evaluators will exist
for other chance constraints which may be imposed, and again these will offer
direct access to the profit which is sacrificed in order to constrain the risks
to the specified levels. Since the model presented here allows for cash flows
to be described by arbitrary discrete distributions, it would be appropriate
for situations where the estimated probability distributions of cash flows
were appreciably asymmetric, multi-modal, etc.

The broader implications of this model for decentralized decision making,
as well as the indicated relationship of project interdependence to the port-

folio effect area discused in some detail in erLJ7.
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Computation of Probabilities

If, in a particular solution, the highest order non-zero term is of
order n, we can define the decision variables in that term as the set N,
Then all terms of lower order than n in which the decision variables are
subsets of N will also be non-zero. There will be n terms of order (n-1),
n(n-1)/2 terms of order (n-2), etc., to n terms of order 1. This means
that a function equal to the sum of the various one-project, two-project,
three-project, etc. probabilities will be double-counting the probabilities.
With the probabilities expressed as we have noted, the value of the highest
order non-zero term represents the total probability of achieving the
specified level. However, all the lower order terms containing x; only of
accepted projects are alsc non-zero. Consequently, to have a function
represent the true probability, each term must subtract the scalar value of
the next lower order terms from the total value of the function.

We ncw proceed to develop this expression analytically by first extend-
ing our definition of P as follows. let N = (1,2, ..., I), the set of all
projects and A & N, that is A is a collection of projects. Let
PA = the probability of achieving a negative cash flow in T periods
if only projects in A are initiated and all other projects (N-A) are rejected.

When A = ¢ , the empty set, P¢ = the probability of achieving a negative
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We now simplify the expression of p(x) inductively term by term starting
with n = 1, The I first order terms in the expression are Xif Pi xi,j' If any
one project, say A, accepted, the result is X, = 1l and the expression becomes
equal to P,. The (1(1-1)/2) seéond order terms are
-1§n (Pyp = Py = Bp) Xy X4 |
where the summé%?on is over subscripts, i and m, Note, we are still requiring
integer values only, 0< X5 1. Hence, if any two projects, A and B, are
accepted, three terms will be non-zero, and the PA s P}3 values in the second order

term will exactly cancel the two non-zero, first order terms. Similarly, the

(I(1-1) (I-2)/6) third order terms must be:

(Pim-Pim-Pin-Pmn+Pi+Pm+ Pn) ¥

i,m,m 15 *mj *nj

If any three projects are accepted, then three second order terms will be
non-zero and the corresponding probahbilities must be cancelled. However, the
sum of the three second order terms contains each of the s&ingle-project
probabilitiés twice, and so these must be added to the third order terms. The
higher order terms are formed in a similar manner, subtracting and adding the
lower order probabilities in order form n-1l, n-2, ete., to 1.

The general form of these expressions is then:

n(A) n(R )
[AERO P, (-1) (-1)"% ip;?o Xy

vhere n(A) = the number of elements of A and where Ro‘_— I ranges over all
possible subsets of projects under consideration. Since P¢ = 0, this term need

never appear in the problem, We shall define

, for example,

= P (_1)1’1(A) (-l)n(Ro)
R AER A |
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cash flow in T periods if no projects are accepted = O,

Let PA,E , for i not in A, be defined as PA,I = PA = PA,i

Similarly e ==DP =P - P + P

P, = = vhen 1 and J are both not in
2% Bl Sl WY WO B WO J

A. In this manner we obtain the general definition of PA 8 when AN\B = @,
’
that is A and B are disjoint subsets of N,
The following lemma, whose proof we omit, follows from our definition of

the "~" notation

Iemma 1. Let Y be any subset of N.

Then ASY PA, YF = 0.
If B is disjoint from Y, then ‘--: P - = ;‘k
Ay B,A, Y-A B

——

For each selection of the decision vector x = (xl, x2,..., xn),

vwhere X, = 1 if project i is accepted and x, = O if project i is rejected,

i
we define p(x) to be the probability of achieving a negative cash flow in
T periods given x.

Proposition 1 p(x) as defined above is given by: ¥

n By, VoA [ (l-xj)_7, where by convention 7T (1-x) = 1.
c

AcN J e N=-A j-0

o . o _
Proof. Given A €N, A # @, set x; =1 if 1€¢A  andx, =0 if 1fA .

Then we must show that p(x°) = P, . To do this, first observe that

A,
114 - TS NAC N=A € > m - =
S N-A (1 xj) £ 0O<TTD> N-ACN A ASA . Since A # P N (1 xJ.)-O,
and it follows that p(x°) = Y Ly = ) P =
AZA, T A2A  “A_, A-A_, N-R

But as A ranges over subsets containing Ao (A2 Ao) ’ A-Ao ranges over all

subsets of N-Ao, as does N-A,
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Therefore p(x°) = Y Py and applying Lemma 1,

QcN-A, o, Q,  (N-A) - Q

with y = N-A_ yields p(x°) = P The only remaining case occurs with

Ao
! o ') _
A =@ . In this case W (1-x.) =1 and p(x) = ), P, =— =0,
o J A,N-A
JeN AEN

wvhich is what is required, Q. E. D.
This gives

Qp = (Py, =Py -Fp)

<.

%m = (Pimn "Pim " fin Py R YEY Pn)

and so on.

The construction of a probability function for a large group of projects
then requires first the computation of the probability of each of the possible
mutually exclusive outcomes which meets the specified level of cash flow
(e.g., for payback). But the determinétion of the probabilities ass;ciated
with each pair, triad, etc., of projects is less difficult than it appears.

If the various individual project cash flows are ordered on the basis of scalar
value within each period and each project, the joint probabilities can be
determined by starting at the maximum (or minimum) values of cash flows and
continuing in order until the cash flow value (Ds) does not meet (or first
achieves) the specified level.

In practical applications this should result in substantially less
computational effort than would be required to determine the probabilities of
all possible outcomes. To put this differently, this simplification arises as

a reflection of our concern with only one side of the probability distribution

of outcomes.ag/

2§/ E.g., as distinguished from other approaches which utilize such measures as
the variance or coefficient of variation in outcomes, etc. See e.g., the
discussion of the concept of semi-varisnce in /20 7/, pp. 188-201.
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Consider the data presented below. We wish to determine the probability
of achieving payback in one year for all possible decisions, We do this by
determining the investment required for each possible decision, then determining
the cash flow combinations which equal or exceed the investment, and finally

determining the probability of each of these cash flow combinations,

The estimates of cash flow, with associated probabilities of occurrence, are

Project 1 Project 2 Project 3
Cash Proba- Cash Proba- Cash Proba-
flow bility flow Dbility flow bility
i k k k k k
dsl psl d's2 psQ d's3 ps3
1st 2 .3 3 L 3 A
year 3 .5 5 5 5 D
5 .2 7 Ol 7 cl
ond 2 .5 2 .5 3 N
year 4 A 5 A 5 .5
5 i .1 7 ol
3rd 1 .3 1 b 2 .3
year 3 .6 3 D 3 L
6 ol 5 Ol h '3
o o) o _ _
COot dl —'6 d2 = -5 d3 = 7

We assume T = 1. We then develop a risk constraint by requiring payback within

one year with a probability of at least |=dl.
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The results for the example problem are tabulated below.

(1) (2) (3) (%) (5) (6)
Decision Investment Cash flow combinations Probability  Total p=1-(5)
(projects which achieve payback of (3) Prob. -
adopted)
1,2,3 18 ot W B e (.2)(.1)(.1) 002 .998
1=K 31 32 33 ] . . . [
1,2 11 at 4 at (.1)(.2) 02 98
[ 31 32 . . . .
1,3 13 none 0] 0 1.0
1l 1l
2,3 12 dp * a3 (.1)(.1)
1 1
A3 * 3 (.1)(.5)
1 1 :
dyp * d33 (.5)(.1) 11 .89
1 6 none 0 0 1.0
1l
2 5 d22 ]
1
d32 .l 06 .l"’
3 7 a} oil .1 .9

331
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Note that in computing such a measure we need not evaluate exhaustively {
all possible combinations of outcomes., In this example, there are a total of
GHQQ/ dif'ferent mutually exclusive outcomes, yet we need compute the outcome
and probability of only ten of these. As an example of the computational
routine consider the decision to adopt all three projects. The outflow for this
decision is 18, We start with the highest positive level of cash flow estimated

for each project, dl s dl + dl . We know that if this combination does not

31 32 33
achieve our specified level, then no other combination of flows will. We find

that dl + dl h dl = 19, since 19 - 18 = 1, we know that if the next lower

31 32 33
level, any combination containing it will not achieve the specified condition.
By inspection this proves to be the case.

The same procedure applies to the various possible combinatiéns of two
adopted projects and one adopted project. With no project adopted, the proba-
bility of achieving payback is, of course, 1.

We observe that with this approach, the probabilities of all possible
outcomes after a decision is made must sum to 1. Therefore, in determining
the probability of achieving a specified level, we may compute either the
probability of achieving it or the probability of not achieving it. Since
these two events include all possible outcomes and are mutually exclusive,
their sum is 1. Consequently, we need to compute at most the probabilities

of one-half the total number of possible outcomes to determine the appropriate

coefficients for a chance constraint of this type.

22/ The sum of 27 possible outcomes if three projects are adopted, 27 if two
arc adopted, 9 if onc is adopted, and l outcome if no project is adopted.
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APPENDIX B

Duality Relations of Integer Programs

The interpretation of a subsidy-penalty system in programs such as
our formulation of the capital budgeting problem obtains via Egon Balas work

in 1_1_7. Balas provides a dual to the mixed integer linear program

Maximize cX
Subject to Ax £ b
xJ. E O, j = l,...,N
o 'y é
X integer, jE N, Ny £ N
as
. 1
max min uwb - v X
b u
Subject to WA-vs=c
u, x > 0
xa. integer, J € Nl
(
unconstrained, J€ Nl
i s
v'j > 0, j€ Nl

Whereas in the ordinary linear programming problem we are looking for a

feasible solution to the primal with the property that the associated solution

to the dual is also feasible, we may observe that in the integer problem that

the dual comes "as close as possible" to satisfying the dual constraints. The
dual slack variables, v'j corresponding to an integer constrained primal variable
are unconstrained. Therefore, the dual constraints may be "violated" (in the
normal sense of a linear program) when Vj < 0. This degree of violation, however,
appears in the dual functional, so that the value of the functicnal is "adjusted"

to correspond to the "gap" between the non-integer optimum and the integer

optimum.
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This gives rice to a generalized shadow price system consisting of non-
negative prices u, associated with each constraint i, and subsidies or pen-
alties Vj associated with each integer variable j. The actual valuec of these
subsidies or penalties (which we shall denote as "Balas type subsidies") can be
determined from the integer solution to the linear program, Balas shows
further39/ that for a model such as ours, wherein there are no requirements
of' discreteness on the dual variables, that for the vector x of integer variables
(WA - ¢ -v)x=0
where v is the vector of subsidies and penalties assigned to the integer
variables,

For our model (16), this relationship takes on the specific form

- + - — .
(36 e+ Y (n apy + [ -a - V. E () -
. 1 h s \h 1 1 .j 1
g4 t '
"N LY B (a) -vyx =0
j=1 t=1 :

The capital budgeting problem is a special case of discrete programming,
since the variables are permitted to take on only the discrete values of O
and 1. The unity upper bounds restrict those variables for which the ordinary
fractional solution would be xi.s 1, so that in order to achieve an integer
solution we need only adjust certain fractional variables to a value of 1 or O.
If we are requiring that the integer solution be primal feésible, then
the optimal integer solution must have a smaller objective than the optimal
fractional solution by the amount vl xl. These Vj values will be associated
with X4 which must be reduced below their optimum fractional values (i.e., to

1), (30) is satisfied with v, = 0, since (332 ) holds as an equality at the

30/ [ 1 _], p. 25-006.,
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fractionul optimum.

We may observe that any vitf O will be sufficient to require xi = 0 if
( 35) is fulfilled as an equality in the fractional solution. However, to
determine the actual values of vy which will achieve true duality, we must
first find the optimal integer solution,

In the capital budgeting case, then, rather than a mixture 6f penalties
and subsidies, the vj will in general represent only penalties. The existence
of such penalties is a substantial block to decentralized decision-making in
the capital budgeting area, since these penalties are a result of the optimi-
zation, and are not available prior to determination of the optimum program.

These penalties are created by the integer requirements, and will, in
general, bear no relationship to the penalties and subsidies of our previous

¥ ¥

development represented by the dual variables 73 and 72 s which arise

from completely independent sources.
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